
RETROSPECTIVE:

How to Print Floating-Point Numbers Accurately

Guy L. Steele Jr.
Sun Microsystems Laboratories
1 Network Drive, UBUR02-311
Burlington, MA 01803 USA
guy.steele@sun.com

Jon L White
Lisp Wizard

2001 The Forward March of Technology Drive
Oceanview, Kansas 99999 USA

jonl@jonl.us

1. History
Our PLDI paper [28] was almost 20 years in the making.

How should the result of dividing 1.0 by 10.0 be printed?
In 1970, one usually got “0.0999999” or “0.099999994”;
why not “0.1”? (The problem of binary-to-decimal conversion is
amazingly tricky, even for fixed-point fractions, let alone floating-
point numbers [31][22][20][12].) Some programming systems of
the day required a prespecified limit for the number of decimal dig-
its to be printed for a binary floating-point number. If, in our exam-
ple, the limit were set to nine decimal places, then the printed result
might well be 0.099999994; but if the limit were set to seven
decimal places, then poorly implemented printers would produce
0.0999999 and those that took the trouble to perform decimal
rounding would produce either 0.1000000 or 0.1.

What is the correct number of digits to produce if the user doesn’t
specify? If a system prints too many digits, the excess digits may
be “garbage,” reflecting more information than the number actually
contains; if a system prints too few digits, the result will be wrong
in a stronger sense: converting the decimal representation back to
binary may not recover the original binary value.

It really bugged one of us (White) that systems of the day not only
produced incorrect decimal representations of binary numbers, but
provided no guaranteed bound on how wrong they might be. In
early 1971, he began to analyze the machine-language algorithm
used in the implementation of MacLisp [23][27] to convert PDP-10
floating-point numbers into decimal notation. He also investigated
the behavior of other language systems, both those that printed a
variable number of digits and those that printed a fixed number of
digits but failed to perform decimal rounding correctly.

Using the “bignum” (high-precision integer) facilities that had
recently been added to MacLisp for other purposes, White inves-
tigated the exact representations of certain floating point numbers
that seemed to print out with too many decimal digits. He discov-
ered that virtually all of the systems he examined suffered from
one or more of the following problems on many floating-point val-
ues: (a) printing many more decimal digits than were necessary,
(b) printing decimal values that differed from the binary values by
many units in the last place (ulps), and (c) exhibiting substantial
“drift” when a value is printed, then read back in, the new value
printed and again read back in, and so on.

White found that the programmers or authors of these systems
invariably claimed that their systems must be producing “correct”
results because (1) they produced lots of decimal digits, making
no claim of producing “shortest” representations, and/or (2) they

20 Years of the ACM/SIGPLAN Conference on Programming Language
Design and Implementation (1979-1999): A Selection, 2003.
Copyright 2003 ACM 1-58113-623-4 ...$5.00.

had coded some variant of Taranto’s algorithm [31]—“I found it
in Knuth!” [18, ex. 4.4–3]. Some also dismissed examples of dis-
crepancies with hand-waving generalizations like those found in
Knuth (“. . . floating point arithmetic is inherently approximate”
[18, section 4.2.1]) and later in Steele (“In general, computations
with floating-point numbers are only approximate.” [29, section
12.1]. But White saw no reason why the printing problem could
not be solved exactly, and he set out to find a way.

One suggested plan for obtaining the shortest output that correctly
preserves the floating-point value was simply to produce many
more decimal digits than necessary; then one would “round back-
wards” in decimal, converting the decimal string back into binary
at each step, until the shortest string of digits was found that would
convert back into the original number. However, this approach is
quite inefficient. It fails to take advantage of information that is in-
crementally available during the steps of digit generation and that
adequately characterizes the difference between what has already
(incrementally) been outputted and the original number.

The first attempt to take advantage of such information was by
White, later in 1971. By 1972, when Steele joined White at MIT to
work on MacLisp, there was a rudimentary version of the algorithm
in the MacLisp PRINT function, better than previous printing al-
gorithms but not yet correct in all cases. White then decided to
try tracking the error propagation by watching what happened to a
value equal to 1

2 ulp, subjected to the same arithmetic operations
that were being performed on the fraction being printed. This line
of investigation led to the use of the variable M in our algorithms.
(We called this value “M” because White thought of it as defining
a “mask,” the complement of the interval [M,1−M], that filters
(“masks”) out fractional values for which enough digits had been
generated and passes through only fractions for which more dig-
its are required, namely those lying in the gap [M,1−M]. As M
grows, the mask grows and the interval at its center shrinks, until
eventually M exceeds 1

2 , the gap shrinks away to nothing, and no
remaining fraction can pass through the mask.)

When Steele left MIT in 1980 to go to Carnegie-Mellon Uni-
versity, MacLisp was using the algorithm Dragon2, with double-
precision floating-point prescaling of values that were large or
small enough to require “E” notation. By about this time Steele
had written a very early draft of the PLDI paper. (He wrote it in
TEX, so it must have been after Fall 1978, when he first ported
TEX from Stanford to MIT, and it must have been prior to the 1981
publication of the second edition of “Knuth Volume 2” [19], which
mentions this unpublished draft in the answer to exercise 4.4–3.)

Steele continued to polish the algorithm, off and on, during
the early 1980s. His principal contributions were (1) to replace
floating-point prescaling with implicit rational prescaling, thus in-
troducing the scale factor S to the algorithm (and incidentally com-

ACM SIGPLAN 372 Best of PLDI 1979-1999

mitting to the use of bignum arithmetic in the printing algorithm
itself); (2) to use two mask quantities M+ and M− rather than just
one; (3) to separate the digit-generation process from the format-
ting process, organizing them as coroutines; (4) to provide a proof
of correctness for the digit-generation process; and (5) to code the
whole thing up (in Pascal), including many different formatters.
(The PL/I-style “picture” formatter was omitted from the PLDI pa-
per for lack of space, alas.) Steele finished all this by 1985.

During the 1980s, White investigated the question of whether one
could use limited-precision arithmetic after all rather than bignums.
He had earlier proved by exhaustive testing that just 7 extra bits suf-
fice for correctly printing 36-bit PDP-10 floating-point numbers, if
powers of ten used for prescaling are precomputed using bignums
and rounded just once. But can one derive, without exhaustive test-
ing, the necessary amount of extra precision solely as a function of
the precision and exponent range of a floating-point format? This
problem is still open, and appears to be very hard.

It weighed on Steele’s mind that Knuth had shown confidence
in him by citing—in a book!—a paper that didn’t really exist yet.
Eventually Steele summoned the effort to complete the paper and
submit it to the 1990 PLDI, just to rid himself of the nagging bur-
den. Imagine our surprise when we discovered that Will Clinger
had written a paper on the decimal-to-binary problem and submit-
ted it to the same conference! (By the way, the third edition of
“Knuth Volume 2” [21] cites our PLDI paper, so all is well now.)

Since our paper was published, there seem to have been exactly
two follow-up papers [9][2] of any consequence. Both provided im-
portant practical improvements on our work; we recommend them
to interested readers and especially to implementors.

2. Influence on Programming Languages
Since our paper was published, it has had a clear influence on the
specification and implementation of many programming languages.

We had coded an early version of this algorithm as part of the
runtime system for MacLisp while we were at MIT in the late
1970s; this version was not completely accurate because it first
used floating-point operations to scale the number to be printed by
a power of 10 if the number was very large or small, but it was
completely accurate for numbers not requiring such prescaling.

The MacLisp successor Lisp Machine Lisp, also developed at
MIT, was influenced by our work [32, p. 281]:

The number of digits printed is the “correct” number; no infor-
mation present in the flonum is lost, and no extra trailing dig-
its are printed that do not represent information in the flonum.
Feeding the [printed representation] of a flonum back to the
reader is always supposed to produce an equal flonum.

The documentation for the commercial version of this language,
Symbolics’ Zetalisp, has similar wording [30, p. 15].

After publication of our paper, the idea began to spread, to the
language Id, another MIT project, in 1991 [1, p. 15]:

Utilities for accurate reading and printing of double precision
floating point numbers have been implemented. The floating
point reader [3] has been implemented in Common Lisp and Id
90, the floating point printer [28] in Common Lisp.

and to Modula-3 [14, p. 15]:
The idea of converting to decimal by retaining just as many dig-
its as are necessary to convert back to binary exactly was pop-
ularized by Guy L. Steele Jr. and Jon L White [28]. David M.
Gay pointed out the importance . . . of demanding that the con-
version to binary handle mid-point cases by a known rule [9].

and to the fourth revision of the report on Scheme, which cites [28]
and [3] and also remarks [24, p. 24]:

. . . the result [of a binary-to-decimal conversion] is expressed
using the minimum number of digits . . .

The fifth revision of the report [17] has similar wording but cites
[2] rather than [28].

Steele had a hand in establishing conversion accuracy require-
ments in The Java Language Specification [11, pp. 506–507],
which requires that all binary-to-decimal and decimal-to-binary
conversions be correctly rounded and that binary-to-decimal con-
versions generate as few digits as possible.

The description of the “basis library” for Standard ML says [25]:
toDecimal should produce only as many digits as are neces-
sary for fromDecimal to convert back to the same number,
i.e., for any Normal or SubNormal real value r, we have:
fromDecimal (toDecimal r) = r . . . Algorithms for ac-
curately and efficiently converting between binary and decimal
real representations are readily available, e.g., see the technical
report by [9].

Soon after that, the language Limbo adopted accurate base con-
version as one of its improvements over C [13, p. 271]:

The most important numerical development at the language
level recently has been accurate binary/decimal conversion
[3][9][28]. Thus printing a real using %g and reading it on a
different machine guarantees recovering identical bits.

As for Haskell, a comment that appears in the code for the func-
tion floatToDigits in the Haskell 98 library [16, p. 14] says
that the code is based on Burger and Dybvig’s work [2].

Borneo is a numerical programming language [4, pp. 7, 9]:
Although published algorithms exist for both correctly rounded
input [3] and output [28], conversion problems persist. Cor-
rectly rounded algorithms are also acceptably fast for common
cases [2], [9]. While working on the BEEF tests for transcen-
dental functions, it was discovered that the Turbo C 1.0 compiler
did not convert 11.0 exactly into a floating point number equal
to 11! . . . Java requires correctly rounded decimal to binary and
binary to decimal conversion . . . Borneo maintains Java’s base
conversion requirements . . .

Steele served as Project Editor for the first edition of the ECMA
standard for the web browser scripting language ECMAScript
(more popularly known as JavaScript), which recommends, but
does not require, accurate conversions [5, p. 36]:

NOTE: The following observations may be useful as guidelines
for implementations, but are not part of the normative require-
ments of this Standard: If x is any number value other than 0,
then ToNumber(ToString(x)) is exactly the same number value
as x. . . . Implementors of ECMAScript may find useful the pa-
per and code written by David M. Gay for binary-to-decimal
conversion of floating-point numbers [9].

A recent extension of the GNU Fortran compiler makes use of
accurate conversion techniques [26, p. 319]:

. . . support routines for performing conversion between charac-
ter strings and intervals . . . were developed based on routines
for floating-point input [9] and floating-point output [2].

Finally, David M. Gay himself has been working on an algebraic
modeling language called AMPL [10, p. 3]:

AMPL and its solver interface library use correctly rounded
binary↔decimal conversions, which is now possible on all ma-
chines where AMPL has run other than old Cray machines.
Details are described in Gay [9]. Part of the reason for men-
tioning binary↔decimal conversions here is to point out a re-
cent extension to Gay [9] that carries out correctly rounded

ACM SIGPLAN 373 Best of PLDI 1979-1999

conversions for other arithmetics with properties similar to bi-
nary IEEE arithmetic. This includes correct directed roundings
and rounding of a decimal string to a floating-point interval
of width at most one unit in the last place, both of which are
obviously useful for rigorous interval computations. There is
no paper yet about this work, but the source files are available
as ftp://netlib.bell-labs.com/netlib/fp/gdtoa.tgz which includes a
README file for documentation.

The IEEE 754 standard for floating-point arithmetic [15] has a
conversion accuracy requirement, but a liberal one. Now that the
practicality of our approach has been established, we have high
hopes that an upcoming revision of that standard will adopt a re-
quirement of full conversion accuracy.

3. Why “Dragon”?
A very few readers have wondered why the principal algorithms
in our work are named “Dragon2” and “Dragon3” and “Dragon4”;
this was an obscure joke (entirely Steele’s fault) alluding to the
“dragon curves” discovered and analyzed by John E. Heighway,
Bruce A. Banks, and William G. Harter and reported on by Martin
Gardner [7][8]. The initial letters in the multiword description of
a “Dragon” algorithm form a sequence of letters ‘F’ and ‘P’ that
represents the sequence of (valley) Folds and (mountain) Peaks in
a piece of paper that has been folded to form a dragon curve.

REFERENCES
[1] Boughton, G. A., editor. Computation Structures Group

Progress Report 1990–91. CSG Memo 337. MIT Laboratory
for Computer Science (Cambridge, MA, June 1991).

[2] Burger, Robert G., and Dybvig, R. Kent. Printing
floating-point numbers quickly and accurately. In Proc. ACM
SIGPLAN ’96 Conf. Prog. Lang. Design and Implementation.
ACM (Philadelphia, PA, June 1996), 108–116.

[3] Clinger, William D. How to read floating point numbers
accurately. In Proc. ACM SIGPLAN ’90 Conf. Prog. Lang.
Design and Implementation. ACM (White Plains, NY, June
1990), 92–101. ACM SIGPLAN Notices 25, 6 (June 1990).

[4] Darcy, Joseph D. Borneo 1.0.2: Adding IEEE 754 floating
point support to Java. U. California, Berkeley, May 1998.

[5] ECMAScript Language Specification, third edition. ECMA
(December 1999). Standard ECMA-262.

[6] Gansner, Emden R., and Reppy, John H. The Standard ML
Basis Manual. Cambridge University Press (New York,
2003). Not yet published—available from October 2003.

[7] Gardner, Martin. Mathematical games. Scientific American
216, 3 (March 1967), 124–125; 216, 4 (April 1967),
118–120; 217, 1 (July 1967), 115.

[8] Gardner, Martin. Mathematical Magic Show. Vintage (New
York, 1978), 207–209, 215–220.

[9] Gay, David M. Correctly Rounded Binary-Decimal and
Decimal-Binary Conversions. Numerical Analysis
Manuscript 90-10. AT&T Bell Laboratories (Murray Hill,
NJ, November 1990).

[10] Gay, David M. Symbolic-Algebraic Computations in a
Modeling Language for Mathematical Programming.
Technical Report 00-3-02. Computing Sciences Research
Center, Bell Laboratories (Murray Hill, NJ, July 2000).

[11] Gosling, James, Joy, Bill, and Steele, Guy. The Java Lan-
guage Specification. Addison-Wesley (Reading, MA, 1996).

[12] Gries, David. Binary to decimal, one more time. In Feijen,
W. H. J., van Gasteren, A. J. M., Gries, D., and Misra, J.,

eds., Beauty is our business: a birthday salute to Edsger W.
Dijkstra. Springer-Verlag (Berlin, 1990), 141–148.

[13] Grosse, Eric. Real Inferno. In Boisvert, Ronald F., editor, The
Quality of Numerical Software: Assessment and
Enhancement: Proc. IFIP TC2/WG 2.5 Working Conf.,
Oxford, United Kingdom, 8–12 July 1996. Chapman Hall on
behalf of IFIP (London, 1997), 270–279.

[14] Horning, Jim, Kalsow, Bill, McJones, Paul, and Nelson,
Greg. Some Useful Modula-3 Interfaces. Memo 113. Digital
Equipment Corporation Systems Research Center (Palo Alto,
CA, December 1993).

[15] IEEE Standard for Binary Floating-Point Arithmetic,
ANSI/IEEE Std 754-1985 edition. IEEE (New York, 1985).

[16] Standard libraries for the Haskell 98 programming language.
http://www.haskell.org/definition/haskell98-library.pdf,
February 1999.

[17] Kelsey, Richard, Rees, Jonathan, Clinger, William, et al. The
revised5 report on the algorithmic language Scheme. ACM
SIGPLAN Notices 33, 9 (September 1998), 26–76.

[18] Knuth, Donald E. Seminumerical Algorithms.
Addison-Wesley (Reading, MA, 1969).

[19] Knuth, Donald E. Seminumerical Algorithms (Second
Edition). Addison-Wesley (Reading, MA, 1981).

[20] Knuth, Donald E. A simple program whose proof isn’t. In
Feijen, W. H. J., van Gasteren, A. J. M., Gries, D., and Misra,
J., eds., Beauty is our business: a birthday salute to Edsger
W. Dijkstra. Springer-Verlag (Berlin, 1990), 233–242.

[21] Knuth, Donald E. Seminumerical Algorithms (Third Edition).
Addison-Wesley (Reading, MA, 1998).

[22] Matula, David W. In-and-out conversions. Communications
of the ACM 11, 1 (January 1968), 47–50.

[23] Moon, David A. MacLISP Reference Manual. MIT Project
MAC (Cambridge, MA, April 1974).

[24] Rees, Jonathan, Clinger, William, et al. The revised4 report
on the algorithmic language Scheme. ACM SIGPLAN Lisp
Pointers 4, 3 (July–September 1991), 1–55.

[25] Reppy, John H., et al. http://cm.bell-labs.com/cm/cs/
what/smlnj/doc/basis/pages/real.html, October 1997. To be
published as [6].

[26] Schulte, M. J., Zelov, V. A., Akkas, A., and Burley, J. C. The
interval-enhanced GNU Fortran compiler. In Csendes, Tibor,
ed., Developments in Reliable Computing. Kluwer
(Dordrecht, Netherlands, 1999), 311–322.

[27] Steele, Jr., Guy L., and Gabriel, Richard P. The evolution of
Lisp, pages 233–330. In History of Programming
Languages. ACM Press (New York, 1996), 233–330.

[28] Steele, Jr., Guy L., and White, Jon L. How to print
floating-point numbers accurately. In Proc. ACM SIGPLAN
’90 Conf. Prog. Lang. Design and Implementation. ACM
(White Plains, NY, June 1990), 112–126. ACM SIGPLAN
Notices 25, 6 (June 1990).

[29] Steele, Guy L., Jr., Fahlman, Scott E., Gabriel, Richard P.,
Moon, David A., and Weinreb, Daniel L. Common Lisp: The
Language. Digital Press (Burlington, MA, 1984).

[30] Reference Guide to Symbolics-Lisp. Symbolics, Inc.
(Cambridge, MA, March 1985).

[31] Taranto, Donald. Binary conversion, with fixed decimal
precision, of a decimal fraction. Communications of the ACM
2, 7 (July 1959), 27.

[32] Weinreb, Daniel, and Moon, David. LISP Machine Manual,
Third Edition. MIT Artificial Intelligence Laboratory
(Cambridge, MA, March 1981).

ACM SIGPLAN 374 Best of PLDI 1979-1999

ACM SIGPLAN 375 Best of PLDI 1979-1999

ACM SIGPLAN 376 Best of PLDI 1979-1999

ACM SIGPLAN 377 Best of PLDI 1979-1999

ACM SIGPLAN 378 Best of PLDI 1979-1999

ACM SIGPLAN 379 Best of PLDI 1979-1999

ACM SIGPLAN 380 Best of PLDI 1979-1999

ACM SIGPLAN 381 Best of PLDI 1979-1999

ACM SIGPLAN 382 Best of PLDI 1979-1999

ACM SIGPLAN 383 Best of PLDI 1979-1999

ACM SIGPLAN 384 Best of PLDI 1979-1999

ACM SIGPLAN 385 Best of PLDI 1979-1999

ACM SIGPLAN 386 Best of PLDI 1979-1999

ACM SIGPLAN 387 Best of PLDI 1979-1999

ACM SIGPLAN 388 Best of PLDI 1979-1999

ACM SIGPLAN 389 Best of PLDI 1979-1999

