
XVF: C++ Introspection by Extensible Visitation

[Extended Abstract]

Kurt Stephens
ION, Inc.

5183 Pinetree Drive
Delray Beach, FL, 33484, USA

kurtstephens@acm.org

May 22, 2001 (revised May 16, 2003)

ABSTRACT
Object serialization and object inspector user interfaces are
concerns that can be orthogonally implemented using intro-
spection via meta-object protocols (MOP). The C++ lan-
guage lacks a formal meta-object protocol, although some
are available as source pre-processors. A full MOP is not
necessary for many classes of problems where basic intro-
spection is useful. This paper describes a technique: exten-
sible visitation of objects as a basic introspection primitive.

1. INTRODUCTION
Introspection, the access of information about a program’s
construction during run-time, is valuable. Meta-object pro-
tocols (MOP) [5] allow object-oriented systems to reify their
own definition. Some C++ MOP implementations ([2], [3])
use pre-compilation.

For common concerns, such as object serialization and ob-
ject inspector user interfaces, a complete MOP is useful but
not required. Extensible visitation based on the Visitor de-
sign pattern [4] is a mechanism, similar to XDR [9], for
interfacing different introspections with little impact to an
existing C++ framework.

2. VISITATION AS AN INTROSPECTION
PRIMITIVE

Generic programming techniques aim to eliminate boiler-
plate code [6]. Traversal code is often the largest part of
many computations.

Standard C++ ostream classes are visitors that produce
output as a side-effect of visiting typed data. Developers
must create ostream visitation methods for each new ap-
plication class. Developers must create similar visitation
methods for other visitors. These methods are specialized

for different visitors, yet do mostly the same thing; recur-
sively visit all data members while side-effecting the visitor.

For example:

class Foo

{

private:

double x, y; // data members

int i3[3];

public:

Foo() { ... }

Foo(double _x, double _y) { ... }

// Visitation Methods, one for each type of visitor.

// ostream dump method.

ostream &print(ostream &os)

{

os << "Foo(" << x ", " << y << ", ";

os << "{ "

<< i3[0] << ", "

<< i3[1] << ", "

<< i3[2]

<< " }";

return os << ")";

}

// XML output method.

ostream &print_xml(ostream &os)

{

os << "<Foo>";

os << "<x>"; print_xml(x, os); os << "</x>";

os << "<y>"; print_xml(y, os); os << "</y>";

os << "<i3>";

print_xml(i3[0], os);

print_xml(i3[1], os);

print_xml(i3[2], os);

os << "</i3>";

return os << "</Foo>";

}

// inspector generation method.



inspector &generate_inspector(inspector &is)

{

is.begin_frame("Foo", this);

is.generate_inspector("x", &x);

is.generate_inspector("y", &y);

is.begin_frame("i3[]", &i3);

is.generate_inspector("0", &i3[0]);

is.generate_inspector("1", &i3[1]);

is.generate_inspector("2", &i3[2]);

is.end_frame(&i3);

is.end_frame(this);

return is;

}

// XDR support method

int xdr(XDR *xdr)

{

return

xdr_double(xdr, &x) &&

xdr_double(xdr, &y) &&

xdr_int(xdr, &i3[0]) &&

xdr_int(xdr, &i3[1]) &&

xdr_int(xdr, &i3[2]);

}

// ... other visitor types

}

In the example above, more visitation methods are needed as
the application classes (visitees) interface with more visitors.
Adding, removing or renaming data members becomes a
maintenance problem, since each visitation method must be
updated. Likewise, adding new visitations becomes difficult
as the application grows, since each application class must
be updated.

If the number of application classes in a system is N and
the number of visitor classes is M, the complexity of the
application-visitor interfaces will be N * M, if visitor-specific
methods are implemented for each application class. If a sin-
gle generic visitation method is used for each visitor class,
the complexity of the application-visitor interfaces will be N

+ M.

Ideally a single visitation method suffices for most types of
visitation. Essentially we want to move the complexity from
the visited classes to the visitors, since the number of vis-
itor classes will be small compared to the visited classes.
Visitor classes tend to interface auxiliary systems and pro-
tocols, such as XML and other I/O systems, and change less
frequently than the application classes.

3. XVF
XVF (eXtensible Visitation Framework) is a C++ template-
based framework for developing visitors and generic visita-
tion methods. In XVF, a generic introspection visitor is
messaged with type, naming and layout information about
the visited objects. The visitor consumes the introspective
messages and controls the recursion during visitation. The
visitor’s introspection methods are virtual, such that any
visitor can be used in any visitation traversal. The set of

introspection methods in the visitor closely follows a de-
composition of the data types in C++: structures (classes),
pointers, arrays and intrinsic types (char, int, double).

3.1 Visitor classes
In XVF, Visitors are sub-classes of XVFVisitor. XVFVisitor
has methods for keeping track of what object is being visited
and what members are being visited. Each intrinsic type
(e.g. char, int, double) has a visitation method specialized
for it in the visitor class.

Visitors are messaged with information about the visitee
during visitation traversal.

3.2 Visitee type objects
In XVF, the XVFType class provides basic type introspec-
tion: type name, type size and allocation and assignment
methods.

XVFType objects are constructed dynamically by class tem-
plates instantiated by template functions. There are five
XVFType templates: intrinsic types (char, int, unsigned

long), abstract classes (non-instantiable classes), concrete
classes (instantiable classes), pointers, and arrays.

The XVFTypeIntrinsic<T> template creates XVFType classes
for intrinsic types. The templates XVFTypeClass<T> and
XVFTypeAbstract<T> create type objects for instantiable
and abstract classes, respectively. Type objects for intrin-
sic types are created ”by hand” in XVF. Pointer and ar-
ray type objects are constructed by XVFTypePtr<T> and
XVFTypeArray<T>, respectively. XVFType templates are
never instantiated by the user of XVF, but are created au-
tomatically by the instantiation of xvf_type(T*) template
functions based on pointers to type T.

Each type object implements a virtual visit(void *data,

XVFVisitor *V) method that is specialized by the type ob-
ject template to call a template function xvf_visit((T *)

data, V);

For example, if aFoo is an instance of class Foo, the tem-
plate function call, xvf_type(aFoo), returns the XVFType

type object for the object instance aFoo. Likewise, the static
method, XVFType::type("Foo"), returns the same XVFtype

type object for the class named "Foo".

The type objects are used to aid the visitors when visiting
each class. For example: a XML input visitor may need to
construct a new object based on a XML tag name.

3.3 Visitor/Visitee Interface
Visitee classes are not sub-classes of a special ”Visitee” class.
They are ”glued” to the XVF library by static type poly-
morphic functions:

XVFType *xvf_type(T *x)

returns the XVFType object for type T.

T *xvf_alloc(T *dummy)

allocates an object of type T.



void xvf_dealloc(T *x)

deallocates an object of type T.

void xvf_visit(T *x, XVFVisitor *V, int opts)

recursively visits an object of type T with visitor V.

Note: XVF does not dispatch using const T because then
void could not be handled in a unified manner and because
data are visited by address.

3.4 Visitation Methods
Any type T that implements a xvf_type(T *x) and
xvf_visit(T *x, XVFVisitor *V, int opts) (the opts

argument is explained later) functions can be visited by any
XVFVisitor object.

XVF supplies macros for constructing a class’ visitation
method and type object accessor functions.

For example:

// Declare xvf_type(Foo *)

XVF_CLASS_BEGIN(Foo);

class Foo {

double x, y;

int i3[3];

public:

Foo() { ... }

Foo(double x, double y) { ... }

// xvf_type() support

XVF_CLASS_METHODS(XVF_);

// xvf_visit() support

XVF_CLASS_VISIT_BEGIN_INLINE(Foo)

{

XVF_MEMB(x);

XVF_MEMB(y);

XVF_MEMB(i3);

}

XVF_CLASS_VISIT_END()

};

// Define xvf_visit(Foo *)

XVF_CLASS_END(Foo);

// Define xvf_type(Foo *)

XVF_CLASS_INSTANCE(Foo);

3.5 Visitor Messages
The visitor is messaged with information about the visited
object during traversal. The visitor can dynamically control
recursion for any visitation member. The XVF_MEMB() macro
above expands into messages to the visitor.

For example: any visitor V visiting FooF will have the fol-
lowing methods called on it:

xvf_visit(&F, V);

is equivalent to:

V->this_begin(xvf_type(&F), &F, opts);

if ( V->memb(xvf_type(&F.x), "x", &F.x, opts) ) {

V->memb_begin(xvf_type(&F.x), "x", &F.x, opts);

xvf_visit(&F.x, V, opts);

V->memb_end(xvf_type(&F.x), "x", &F.x, opts);

}

if ( V->memb(xvf_type(&F.y), "y", &F.y, opts) ) {

V->memb_begin(xvf_type(&F.y), "y", &F.y, opts);

xvf_visit(&F.y, V, opts);

V->memb_end(xvf_type(&F.y), "y" &F.y, opts);

}

if ( V->memb(xvf_type(&F.i3), "i3", &F.y, opts) ) {

V->memb_begin(xvf_type(&F.i3), "i3", &F.y, opts);

V->arry_begin(xvf_type(&F.i3),

xvf_type(&F.i3[0]),

&F.i3, 3, opts);

V->elem_begin(0, opts);

xvf_visit(&F.i3[0], V, opts);

V->elem_end(0, opts);

V->elem_begin(1, opts);

xvf_visit(&F.i3[1], V, opts);

V->elem_end(1, opts);

V->elem_begin(2, opts);

xvf_visit(&F.i3[2], V, opts);

V->elem_end(3, opts);

V->arry_end(xvf_type(&F.i3),

xvf_type(&F.i3[0]),

&F.i3, 3, opts);

V->memb_end(xvf_type(&F.i3), "i3" &F.y, opts);

}

V->this_end();

4. HANDLING CONST-NESS
The opts argument to the visit functions relays const-ness
to the visitor without requiring different routines and type
objects for const and non-const visitation.

If opts == XVF_NON_CONST in V->visit(T *data, int

opts), V->visit() has license to modify *data.

For example: an inspector user-interface visitor may gener-
ate an editable or non-editable user-interface field depending
if opts == XVF_NON_CONST or opts == XVF_CONST.

5. HANDLING VISIT-BY-VALUE
Sometimes the visitation semantics of a class’ members
should be through a pair of accessor methods or functions,
rather than directly on an object data member.

For example:

XVF_CLASS_BEGIN(Temperature);

class Temperature {

private:

double _f; // Fahrenheit: f = (c * 1.8) + 32



double _c; // Celsius: c = (f - 32) / 1.8

public:

Temperature() { celsius(0); }

// Getter, setter.

double fahrenheit() const { return _f; }

void fahrenheit(double x) {

_f = x; _c = (_f - 32) / 1.8;

}

// Getter, setter.

double celsius() const { return _c; }

void celsius(double x) {

_c = x; _f = _c * 1.8 + 32;

}

// Getter, setter.

// Note: different setter name style

double kelvin() const { return _c + 273.15; }

void set_kelvin(double x) {

celsius(x - 273.15);

}

XVF_CLASS_METHODS(XVF_);

XVF_CLASS_VISIT_BEGIN_INLINE(Temperature)

{

// Visit by accessor code

XVF_ACC_T("fahrenheit", // name

double, // type

_xvfv_this->fahrenheit(),

// getter

_xvfv_this->fahrenheit(XVF_TEMP)

// setter

);

// Visit by accessor names using

// shorthand for:

// getter: _xvfv_this->celsius()

// setter: _xvfv_this->celsius(XVF_TEMP)

XVF_ACC_T_M("celsius",

double,

celsius,

celsius

);

XVF_ACC_T_M("kelvin",

double,

kelvin,

set_kelvin

);

}

XVF_CLASS_VISIT_END()

};

XVF_CLASS_END(Temperature);

XVF_CLASS_INSTANCE(Temperature);

If any visitor updates the "fahrenheit", "celsius" or
"kelvin" members of a Temperature object, the Fahrenheit,
Celsius and Kelvin values will be synchronized through the
getter and setter methods in Temperature.

6. VISITATION ATTRIBUTES
A visitation method can relay visitor-specific information
using visitation attributes.

Imagine a visitor that needs to know how each member is
protected in a C++ class:

...

class Bar {

private:

int a; // a is private.

protected:

float b; // a is protected.

public:

char *c; // c is public.

Bar(...)

XVF_CLASS_VISIT_BEGIN_INLINE(Bar)

{

// Save and set attribute value.

XVF_ATTR_BEGIN("C++:protection", "private");

XVF_MEMB(a);

// Set attribute value.

XVF_ATTR("C++:protection", "protected");

XVF_MEMB(b);

XVF_ATTR("C++:protection", "public");

XVF_MEMB(c);

// Restore attribute value.

XVF_ATTR_END("C++:protection");

}

XVF_CLASS_VISIT_END();

};

...

The specialized visitor will check the attribute named
"C++:protection" for its value and produce results accord-
ingly.

7. EXAMPLES
Below are sample uses of visitor objects using the same visit
methods for class Foo. The visitor code is not presented
here.

7.1 A Structured Data Dumper
A structured data visitor writes a human-readable represen-
tation to an ostream.

XVF_Dump_Out<ostream> xvf(cout);

Foo p(1, 2);

xvfv << p;

7.2 An Archiver
An archiver visitor writes a machine-readable representation
to an ostream.



Figure 1: TK widget generated by
XVF˙TK˙Inspector.

XVF_Archive_Out<ostream> xvfv(cout);

Foo p(1, 2);

xvfv << p;

7.3 XML I/O
An XML output visitor writes objects as an XML stream.

XVF_XML_Out<ostream> xvfv(cout);

Foo p(1, 2);

xvfv << p;

An XML input visitor reads an XML stream into a object.

XVFV_XML_In<istream> xvfv(cin);

Foo p;

xvfv >> p;

7.4 Dynamic GUI generation
An inspector visitor generates TCL/TK code to create an
inspector GUI.

Tcl_Interp *interp;

XVF_TK_Inspector xvfv(interp);

Foo p(1, 2);

xvfv << p;

7.5 Reflective Accessors
These accessor visitors apply getter and setter methods by
name.

XVF_Getter xvfg;

Foo p(1, 2);

double py;

xvfg(&p, xvf_type(&p), "y", &py); // py = p.y

XVF_Setter xvfs;

xvfs(&p, xvf_type(&p), "x", &py); // p.x = py

7.6 XDR Bridge
This visitor provides XDR services.

XDR *xdr;

XVF_XDR xvfv(xdr);

xvfv << p;

8. RELATED WORK
External Data Representation (XDR) [9] uses generic visita-
tion for encoding, decoding and freeing C objects. XDR vis-
itors cannot be sub-classed directly and do not provide any
mechanisms for XDR visitors to determine member names.
XDR is used primarily for Remote Procedure Calls (RPC)
[7].

OpenC++ [3] provides introspection using pre-compiler
techniques. Iguana [2] seems to be based on pre-compiler
techniques as well, but no public implementations are of-
fered.

[6] discusses generic traversal combinator generation for
generic programming support.

9. FUTURE WORK
Namespaces, enumerations, bit-fields, unions, function
pointers and methods are not handled. Class versioning
for backward compatibility is not handled. A pre-processor
to parse members from class definitions to generate and in-
sert xvf_visit() methods would be helpful; OpenC++ or
SWIG [1] might be applicable. A C interface for legacy code
may also be useful.

10. CONCLUSION
This paper describes a method for basic introspection
in C++ using the Visitor design pattern. A pro-
totype implementation of XVF is available at URL:

http://kurtstephens.com/pub/xvf.

11. REFERENCES
[1] D. Beazley. Simplified Wrapper and Interface

Generator Homepage, URL: http://www.swig.org,
2003.

[2] V. Cahill. The Iguana Project Homepage, URL:
http://www.dsg.cs.tcd.ie/~coyote, 2003.

[3] S. Chiba. OpenC++ Homepage, URL:
http://www.csg.is.titech.ac.jp/~chiba/openc++.html,
2003.

[4] E. Gamma, R. Helm, R. Johnson and J. Vlissides.
Design Patterns, Addison-Wesley, 1995.

[5] G. Kiczales. The Art of the Metaobject Protocol, MIT
Press, 1991.

[6] R. Lammel and S. Jones. Scrap Your Boilerplate: A
Practical Design Pattern for Generic Programming. In
ACM SIGPLAN Workshop on Types in Language
Design and Implementation (TLDI 2003), pages
26-37, ACM, 2003.

[7] R. Srinivasan. RFC 1831: RPC: Remote Procedure
Call Protocol Specification Version 2, URL:
http://www.ietf.org/rfc/rfc1831.txt, 1995.

[8] K. Stephens. XVF Package Homepage, ION, Inc.,
URL: http://kurtstephens.com/pub/xvf, 2001.

[9] Sun Microsystems, Inc. RFC 1014: XDR: External
Data Representation Standard, URL:
http://www.ietf.org/rfc/rfc1014.txt, 1987.


